

Synthesis of Bulk and Alumina-Supported Bimetallic Carbide and Nitride Catalysts

Scott Kirlann, Brian Diaz, and Mark E. Bussell*

Department of Chemistry, MS-9150, Western Washington University, Bellingham, Washington 98225

Received October 19, 2001. Revised Manuscript Received July 26, 2002

A new synthesis for the preparation of the bimetallic carbide, $\text{Co}_3\text{Mo}_3\text{C}$, as well as syntheses for the preparation of alumina-supported $\text{Ni}_2\text{Mo}_3\text{N}$, $\text{Co}_3\text{Mo}_3\text{N}$, and $\text{Co}_3\text{Mo}_3\text{C}$ are described. The syntheses utilize the temperature-programmed reduction (TPR) method in which solid-state precursors are converted to the desired products in the presence of gas-phase reactants. Bulk and alumina-supported $\text{Co}_3\text{Mo}_3\text{C}$ is prepared in a two-step synthesis in which oxide precursors are converted to $\text{Co}_3\text{Mo}_3\text{N}$, which is subsequently carburized to give the bimetallic carbide. Alumina-supported $\text{Ni}_2\text{Mo}_3\text{N}$ and $\text{Co}_3\text{Mo}_3\text{N}$ are prepared from supported oxide precursors via nitridation in flowing NH_3 , while the carburization of bulk and alumina-supported $\text{Co}_3\text{Mo}_3\text{N}$ utilizes a CH_4/H_2 mixture to yield the bimetallic carbide products. Elemental analysis of a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst suggests incomplete replacement of N with C under the synthesis conditions employed. The alumina-supported carbide and nitride materials have high surface areas and O_2 chemisorption capacities, suggesting that these syntheses provide an excellent route for the preparation of heterogeneous catalysts in which bimetallic carbides and nitrides are the active component.

Introduction

Monometallic and bimetallic carbides and nitrides of early transition metals have drawn considerable interest in recent years for their potential use as heterogeneous catalysts in a variety of industrial processes.^{1,2} To be useful as heterogeneous catalysts, the carbide and nitride materials must possess high surface areas, and the temperature-programmed reduction (TPR) synthesis method has been shown to be particularly successful in this regard. Unsupported carbide and nitride catalysts typically have surface areas in the range 30–100 m^2/g ,^{3,4} while oxide-supported materials can have surface areas well over 100 m^2/g and high dispersion of the carbide or nitride phase.^{5–7}

Hydrotreating, in which S, N, and O impurities are removed from fossil fuel feedstocks, is an area of catalysis in which early transition metal carbides and nitrides have attracted significant interest. Industrial hydrotreating catalysts typically consist of alumina-supported molybdenum promoted with either cobalt or

nickel and the catalysts are sulfided prior to use.⁸ Studies in a number of laboratories over the past few years have shown alumina-supported molybdenum carbide ($\beta\text{-Mo}_2\text{C}$)^{5,6,9} and nitride ($(\gamma\text{-Mo}_2\text{N})$)^{6,9–12} to be more active hydrodesulfurization (HDS) catalysts than conventional sulfided molybdenum catalysts. More recently, a number of laboratories have investigated the hydro-treating properties of unsupported $\text{Co}_3\text{Mo}_3\text{N}$ ^{13,14} and Co–Mo–C phases^{15,16} as well as supported nitrided materials containing Mo with either Co or Ni.^{17–23} In

(8) Topsøe, H.; Clausen, B.; Massoth, F. E. Hydrotreating Catalysts. In *Catalysis: Science and Technology*; Anderson, J. R., Boudart, M., Eds.; Vol. 11; Springer-Verlag: Berlin, 1996; p 1.

(9) Aegerter, P. A.; Quigley, W. W. C.; Simpson, G. J.; Ziegler, D. D.; Logan, J. W.; McCrea, K. R.; Glazier, S.; Bussell, M. E. *J. Catal.* **1996**, 164, 109.

(10) Nagai, M.; Miyao, T.; Tuboi, T. *Catal. Lett.* **1993**, 18, 9.

(11) Nagai, M.; Uchino, O.; Kusugaya, T.; Omi, S. In *Hydrotreatment and Hydrocracking of Oil Fractions*; Froment, G., Delmon, B., Grange, P., Eds.; Elsevier: New York, 1997; p 541.

(12) Nagai, M.; Kiyoshi, M.; Tominaga, H.; Omi, S. *Chem. Lett.* **2000**, 702.

(13) Kim, D.-W.; Lee, D.-K.; Ihm, S.-K. *Catal. Lett.* **1997**, 43, 91.

(14) Ihm, S.-K.; Kim, D.-W.; Lee, D.-K. Effects of Sulfidation of Mo Nitride and CoMo Nitride Catalysts. In *Studies in Surface Science and Catalysis*; Bartholomew, C. H., Fuentes, G. A., Eds.; Elsevier Science: New York, 1997; Vol. 111; p 343.

(15) Xiao, T.-C.; York, A. P. E.; Al-Megren, H.; Claridge, J. B.; Wang, H.-T.; Green, M. L. H. *C. R. Acad. Sci. Paris, Ser. IIc* **2000**, 3, 451.

(16) Xiao, T.-C.; York, A. P. E.; Al-Megren, H.; Williams, C. V.; Wang, H.-T.; Green, M. L. H. *J. Catal.* **2001**, 202, 100.

(17) Park, H. K.; Lee, J. K.; Yoo, J. K.; Ko, E. S.; Kim, D. S.; Kim, K. L. *Appl. Catal. A* **1997**, 150, 21.

(18) Yang, S.; Jiang, X.; Yan, W.; Ying, P.; Xin, Q. *Chin. J. Catal.* **1997**, 18, 179.

(19) Logan, J. W.; Heiser, J. L.; McCrea, K. R.; Gates, B. D.; Bussell, M. E. *Catal. Lett.* **1998**, 56, 165.

(20) Chu, Y.; Wei, Z.; Yang, S.; Li, C.; Xin, Q.; Min, E. *Appl. Catal. A* **1999**, 176, 17.

(21) Miga, K.; Stanczyk, K.; Sayag, C.; Brodzki, D.; Djegane, Mariadassou, G. *J. Catal.* **1999**, 193, 63.

(22) Trawczynski, J. *Appl. Catal. A* **2000**, 197, 289.

* To whom correspondence should be addressed. Prof. Mark E. Bussell, Department of Chemistry, MS-9150, Western Washington University, 516 High St., Bellingham, WA 98225-9150. Tel.: 360-650-3145. Fax: 360-650-2826. E-mail: Mark.Bussell@wwu.edu.

(1) Oyama, S. T. *Catal. Today* **1992**, 15, 172.

(2) Oyama, S. T. Introduction to the Chemistry of Transition Metal Carbides and Nitrides. In *The Chemistry of Transition Metal Carbide and Nitrides*; Oyama, S. T., Ed.; Blackie Academic & Professional: New York, 1996; p 1.

(3) Ramanathan, S.; Oyama, S. T. *J. Phys. Chem.* **1995**, 99, 16365.

(4) Claridge, J. B.; York, A. P. E.; Brungs, A. J.; Green, M. L. H. *Chem. Mater.* **2000**, 12, 132.

(5) Sajkowski, D. J.; Oyama, S. T. *Appl. Catal. A* **1996**, 134, 339.

(6) McCrea, K. R.; Logan, J. W.; Tarbuck, T. L.; Heiser, J. L.; Bussell, M. E. *J. Catal.* **1997**, 171, 255.

(7) Miyao, T.; Shishikura, I.; Matsuoka, M.; Nagai, M.; Oyama, S. T. *Appl. Catal. A* **1997**, 165, 419.

the cases of the supported catalysts, the nitrides were impure and it is not possible to ascribe the catalytic properties to a single phase.

In the current study, we report a new synthesis for the preparation of the bimetallic carbide, $\text{Co}_3\text{Mo}_3\text{C}$, as well as syntheses for the preparation of alumina-supported $\text{Ni}_2\text{Mo}_3\text{N}$, $\text{Co}_3\text{Mo}_3\text{N}$, and $\text{Co}_3\text{Mo}_3\text{C}$.

Experimental Methods

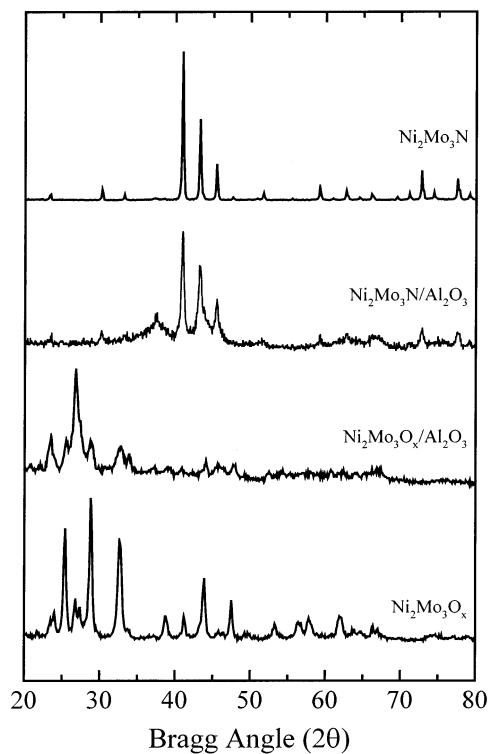
Catalyst Synthesis. *Synthesis of $\text{Ni}_2\text{Mo}_3\text{N}$ and $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$.* An oxide precursor to $\text{Ni}_2\text{Mo}_3\text{N}$ was prepared by dissolving a mixture of nickel nitrate ($(\text{Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, Alfa Aesar, 99.9985%) (5.165 g, 17.76 mmol) and ammonium heptamolybdate ($(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$, Fisher, A.C.S. grade) (4.705 g, 3.807 mmol) in 120 mL of deionized water, evaporating to dryness, and calcining at 773 K for 2 h in air. A light green powder was obtained after calcination. The oxide precursor was converted to $\text{Ni}_2\text{Mo}_3\text{N}$ using temperature-programmed reduction (TPR) in flowing ammonia; the synthesis apparatus has been described in detail elsewhere.⁹ Approximately 0.5 g of the oxide precursor was placed onto a quartz wool plug located in a quartz U-tube which was then placed in a tubular furnace. The sample was degassed for 30 min at 295 K followed by 1 h at 393 K, both in 60 sccm He (Airgas, 99.999%). The He was purified prior to use by passing it through 5A molecular sieve (Alltech) and O_2 (Oxyclear) purification traps. Following degassing, the sample was heated from 393 to 1173 K at a rate of 5 K/min in 30 sccm ammonia (NH_3 , Airgas, 99.99%) and the sample was then furnace-cooled to room temperature in the ammonia flow. The ammonia was purified in the same manner as was described above for the He. Following furnace cooling, the $\text{Ni}_2\text{Mo}_3\text{N}$ product was passivated for 3 h in a 60 sccm flow of 1 mol % O_2/He (Airgas) prior to air exposure.

Alumina-supported oxide precursors to $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts with theoretical loadings of 10, 15, 20, 25, 30, and 50 wt % $\text{Ni}_2\text{Mo}_3\text{N}$ were prepared by impregnation of finely ground alumina ($\gamma\text{-Al}_2\text{O}_3$, Engelhard Al-3945, 1/12 in. extrusions) with aqueous solutions of $\text{Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ and $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$ followed by calcination in air. For example, the precursor to the 30 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst was prepared by impregnation of $\gamma\text{-Al}_2\text{O}_3$ (11.08 g) with an aqueous solution of $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$, resulting in 6.00 g of $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}$ on the support after drying at 393 K and subsequent impregnation with an aqueous solution of $\text{Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ to give 6.59 g $\text{Ni}(\text{NO}_3)_2$ on the support after drying. The impregnated alumina was calcined and then nitrided as described above to give a 30 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst. The $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts with the other $\text{Ni}_2\text{Mo}_3\text{N}$ loadings were prepared similarly.

Synthesis of $\text{Co}_3\text{Mo}_3\text{N}$ and $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$. An oxide precursor to $\text{Co}_3\text{Mo}_3\text{N}$ was prepared by dissolving cobalt chloride ($\text{Co}(\text{Cl})_2 \cdot 6\text{H}_2\text{O}$, Alfa Aesar, 99.9%) (5.0436 g, 21.198 mmol) in approximately 30 mL of deionized water. This solution was added dropwise over 20 min with stirring to a second solution consisting of sodium molybdate, ($\text{Na}_2\text{MoO}_4 \cdot 2\text{H}_2\text{O}$, Fisher, A.C.S. grade) (5.1288 g, 21.198 mmol) dissolved in 40 mL of deionized water. The purple precipitate was collected, rinsed with chilled deionized water, chilled ethanol, and a final rinse with chilled deionized water. The sample was dried overnight at 393 K and then calcined at 773 K for 2 h in air. Following grinding to a fine powder, the oxide precursor was recalcined at 773 K for 2 h in air. The oxide precursor was converted to $\text{Co}_3\text{Mo}_3\text{N}$ via TPR in flowing ammonia using the system described briefly above and in detail elsewhere.⁹ Approximately 0.5 g of the oxide precursor was degassed for 1 h at 295 K in 60 sccm He. Following degassing, the sample was heated from 295 to 1023 K at a rate of 0.5 K/min in 100 sccm NH_3 and held at 1023 K in the ammonia flow for 12 h. The

$\text{Co}_3\text{Mo}_3\text{N}$ product was furnace-cooled to room temperature in flowing ammonia and then passivated in a 60 sccm flow of 1 mol % O_2/He for 3 h prior to air exposure.

Alumina-supported oxide precursors to $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts with theoretical loadings of 11, 15, 17.5, 20, 22.5, 28.5, and 35 wt % $\text{Co}_3\text{Mo}_3\text{N}$ were prepared by impregnation of $\gamma\text{-Al}_2\text{O}_3$ with aqueous solutions of $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ and $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$ followed by calcination in air. The alumina was calcined at 773 K for 3 h in air prior to the first impregnation. The impregnated samples were dried overnight at 373 K after each successive impregnation. For example, the precursor to the 28.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst was prepared by impregnation of $\gamma\text{-Al}_2\text{O}_3$ (10.0 g) with an aqueous solution of $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$, resulting in 4.40 g of $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}$ on the support after drying, with subsequent impregnation with an aqueous solution of $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ to give 7.26 g of $\text{Co}(\text{NO}_3)_2$ on the support after drying. The impregnated alumina was calcined at 773 K for 3 h and then nitrided according to the following procedure. Approximately 1.0 g of the oxide precursor was degassed for 1 h at 295 K in 60 sccm He. Following degassing, the sample was heated from 295 to 1023 K at a rate of 2 K/min in 60 sccm NH_3 . The $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst was furnace-cooled to room temperature in flowing ammonia and then passivated in a 60 sccm flow of 1 mol % O_2/He for 3 h prior to air exposure.


Synthesis of $\text{Co}_3\text{Mo}_3\text{C}$ and $\text{Co}_2\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$. $\text{Co}_3\text{Mo}_3\text{N}$ was prepared according to the procedure described above. Following furnace cooling in flowing ammonia (60 sccm), the intermediate product $\text{Co}_3\text{Mo}_3\text{N}$ was degassed for 30 min in 60 sccm He at 295 K. Under continued He flow (60 sccm), the sample was heated to 673 K over 10 min, the flow switched to 60 sccm of a 20 mol % CH_4/H_2 mixture (Airgas), and the sample temperature increased from 673 to 950 K at a rate of 0.5 K/min. The flow was then switched to 60 sccm He and the $\text{Co}_3\text{Mo}_3\text{C}$ product was furnace-cooled to room temperature. The bimetallic carbide was passivated in a 60 sccm flow of 1 mol % O_2/He for 3 h at room temperature prior to air exposure. In a related series of syntheses, the nitridation and passivation steps were kept the same, but the maximum TPR temperature achieved during the carburization step was increased incrementally from 298 to 950 K.

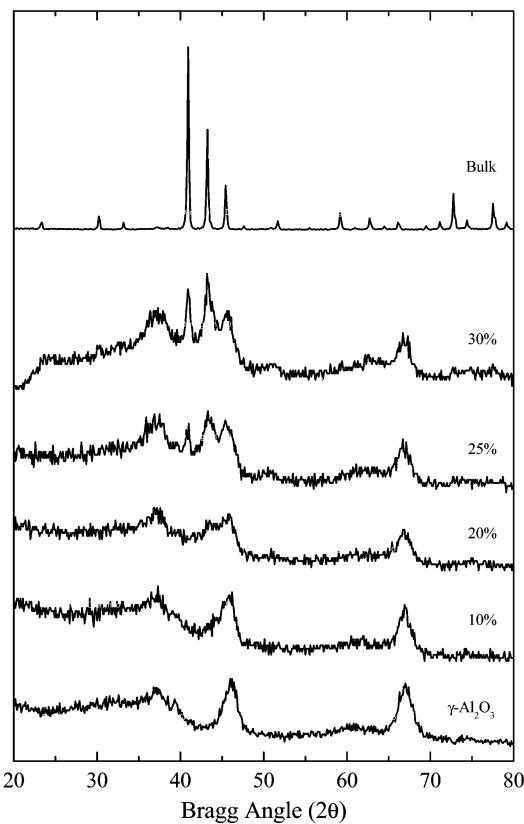
The following procedure was used to prepare $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalysts with theoretical loadings of 15, 20, and 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}$. Alumina-supported $\text{Co}_3\text{Mo}_3\text{N}$ precursors with appropriate loadings were prepared as described above and then carburized according to the procedure described above for unsupported $\text{Co}_3\text{Mo}_3\text{C}$. Following synthesis, the $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalysts were passivated in a 60 sccm flow of 1 mol % O_2/He for 3 h at room temperature prior to air exposure. A series of syntheses were also carried out in which a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ precursor was prepared as described above, but the maximum TPR temperature achieved in the carburization step was increased incrementally from 750 to 950 K.

Catalyst Characterization. *X-ray Diffraction Measurements.* X-ray diffraction (XRD) patterns were acquired on a Rigaku Geigerflex powder diffractometer using the Vaseline smear method. The system uses $\text{Cu K}\alpha$ radiation ($\lambda = 1.5418 \text{ \AA}$) and is interfaced to a personal computer for data acquisition and analysis.

Transmission Electron Microscopy Measurements. Transmission electron microscope (TEM) images were acquired using a JEOL 2010 high-resolution transmission electron microscope operating at 200 keV. Samples of the alumina-supported bimetallic carbide and nitride catalysts as well as their oxide precursors were placed on a 200-mesh copper grid coated with Formvar and carbon.

Elemental Analysis. Metals analyses of bulk and alumina-supported bimetallic carbide and nitride catalysts were carried out by Huffman Laboratories, Inc. using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Carbon, hydrogen, and nitrogen (CHN) analyses of samples of $\text{Co}_3\text{Mo}_3\text{N}$ and $\text{Co}_3\text{Mo}_3\text{C}$ as well as of samples of intermediate composition, $\text{Co}_3\text{Mo}_3\text{N}_{x}\text{C}_{y}$, were carried out by Oneida Research Services, Inc. CHN analyses of the remaining catalysts were carried out by Huffman Laboratories, Inc.

Figure 1. X-ray diffraction patterns for $\text{Ni}_2\text{Mo}_3\text{O}_x$, $\text{Ni}_2\text{Mo}_3\text{O}_x/\text{Al}_2\text{O}_3$, $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$, and $\text{Ni}_2\text{Mo}_3\text{N}$. The theoretical loading of the supported oxide precursor and bimetallic nitride is 50 wt % $\text{Ni}_2\text{Mo}_3\text{N}$.


BET and Pulsed Chemisorption Measurements. Single-point BET surface area measurements were obtained using a Micromeritics PulseChemisorb 2700 apparatus. Catalyst samples (~ 0.10 g) were placed in a quartz U-tube, degassed in a 60 sccm flow of He for 30 min at room temperature, followed by a 2-h degassing in a 45 sccm flow of He at 623 K and then cooled to room temperature under flowing He. A 35 sccm flow of a 28.65 mol % N_2/He mixture (Airco) was maintained during the surface area measurement. The instrument was calibrated with pure N_2 gas prior to a BET measurement. The He (Airgas, 99.999%) used was purified prior to use by passing it through 5A molecular sieve (Alltech) and O_2 (Oxyclear) purification traps.

Low-temperature O_2 pulsed chemisorption measurements were also carried out using the Micromeritics PulseChemisorb 2700 instrument. Chemisorption capacity measurements were conducted using a 10.3 mol % O_2/He mixture (Airco) as the probe gas. All catalyst samples (~ 0.10 g) were degassed in a 60 sccm flow of He at room temperature for 30 min and were then reduced prior to the chemisorption measurement. Samples were reduced by heating from room temperature to 673 K (6.3 K/min) in a 60 sccm flow of H_2 and holding at 673 K for 2 h. Finally, the samples were degassed in 45 sccm He at 673 K for 1 h.

Chemisorption capacities were measured by injecting a calibrated volume (0.101 mL) of the probe gas mixture at 1-min intervals into a constant flow of He (15 sccm) until O_2 uptake ceased. Prior to injection, the probe gas mixture was passed through a 1/8 in. coil of stainless steel tubing submerged in a pentane slush (~ 142 K). The O_2 chemisorption measurements were carried out with the catalyst samples held at 196 K.

Results

$\text{Ni}_2\text{Mo}_3\text{N}$ and $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$. As shown in Figures 1 and 2, we have successfully prepared unsupported $\text{Ni}_2\text{Mo}_3\text{N}$ as well as a series of $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts (10–50 wt % $\text{Ni}_2\text{Mo}_3\text{N}$) by nitridation of unsupported and alumina-supported $\text{Ni}_2\text{Mo}_3\text{O}_x$ precursors, respec-

Figure 2. X-ray diffraction patterns for $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts with theoretical loadings of 10, 20, 25, and 30 wt % $\text{Ni}_2\text{Mo}_3\text{N}$. Also shown for comparison purposes are the XRD patterns for $\gamma\text{-Al}_2\text{O}_3$ and $\text{Ni}_2\text{Mo}_3\text{N}$.

tively, in flowing NH_3 . The XRD pattern for the unsupported $\text{Ni}_2\text{Mo}_3\text{O}_x$ precursor (Figure 1) indicates that the material is a mixture of $\alpha\text{-NiMoO}_4$ (card no. 33-0948)²⁴ and MoO_3 (card no. 35-0609),²⁴ which is consistent with the XRD pattern described by Alconchel et al.²⁵ On the other hand, the XRD pattern for a high-loading $\text{Ni}_2\text{Mo}_3\text{O}_x/\text{Al}_2\text{O}_3$ precursor (Figure 1) indicates that the supported phase consists primarily of $\beta\text{-NiMoO}_4$ (card no. 12-0348)²⁴ and MoO_3 (card no. 35-0609).²⁴ The XRD pattern for the material produced by nitridation of the unsupported precursor, shown in Figure 1, is identical to those reported by Alconchel et al.²⁵ and Herle et al.²⁶ for pure $\text{Ni}_2\text{Mo}_3\text{N}$. The elemental composition of the unsupported $\text{Ni}_2\text{Mo}_3\text{N}$, listed in Table 1, is consistent with that expected of the phase pure material.

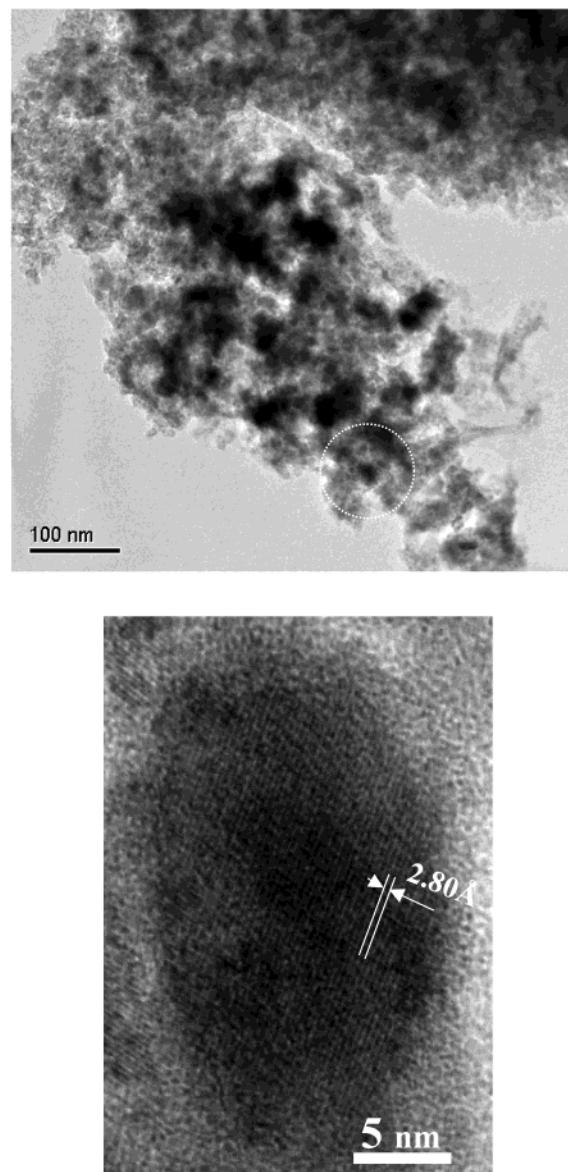
The XRD pattern for the $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst in Figure 1 shows the same peaks as those of unsupported $\text{Ni}_2\text{Mo}_3\text{N}$ as well as broad peaks located at $\sim 37.5^\circ$ and 67.0° , which are associated with the $\gamma\text{-Al}_2\text{O}_3$ support (card no. 47-1308).²⁴ The peak at $\sim 37.5^\circ$ may also indicate the presence of a small amount of $\gamma\text{-Mo}_2\text{N}$ impurity (card no. 25-1366)²⁴ in the supported bimetallic nitride phase. The XRD patterns for a series of $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts, shown in Figure 2, indicate that alumina-supported $\text{Ni}_2\text{Mo}_3\text{N}$ can be prepared with a range of

(24) *JCPDS Powder Diffraction File*, International Centre for Diffraction Data: Swarthmore, PA, 2000.

(25) Alconchel, S.; Sapiña, F.; Beltrán, D.; Beltrán, A. *J. Mater. Chem.* **1999**, 9, 749.

(26) Herle, P. S.; Hegde, M. S.; Sooryanarayana, K.; Row, T. N. G.; Subbanna, G. N. *Inorg. Chem.* **1998**, 37, 4128.

Table 1. Elemental Composition of Bulk and Supported Bimetallic Catalysts


catalyst	composition (wt %)
$\text{Ni}_2\text{Mo}_3\text{N}$	calcd.: Ni 28.11, Mo 68.66, N 3.34 actual: Ni 27.98, Mo 68.59, N 3.43
$\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$	calcd.: Ni 8.43, Mo 20.60, N 1.03 actual: Ni 7.84, Mo 18.36, N 2.07, C 0.06
$\text{Co}_3\text{Mo}_3\text{N}$	calcd.: Co 36.94, Mo 60.14, N 2.93 actual: Co 36.90, Mo 60.31, N 2.76, C 0.03
$\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$	calcd.: Co 8.31, Mo 13.53, N 0.66 actual: Co 7.97, Mo 12.96, N 1.68, C 0.04
$\text{Co}_3\text{Mo}_3\text{C}$	calcd.: Co 37.09, Mo 60.39, C 2.52 actual: Co 36.68, Mo 60.67, C 2.49, N 0.10
$\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$	calcd.: Co 8.31, Mo 13.53, C 0.66 actual: Co 7.82, Mo 12.69, C 0.35, N 0.19

crystallite sizes. For the 30 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst, an average crystallite size of 16 nm can be calculated using the Scherrer equation and the full-width at half-maximum (fwhm) of the peak at 40.9° .²⁷ This crystallite size is considerably smaller than that reported by Jacobsen²⁸ of 44 nm for unsupported $\text{Ni}_2\text{Mo}_3\text{N}$. No XRD peaks associated with $\text{Ni}_2\text{Mo}_3\text{N}$ are apparent above the background noise for loadings below 20 wt % $\text{Ni}_2\text{Mo}_3\text{N}$. The presence of $\text{Ni}_2\text{Mo}_3\text{N}$ on the alumina support is inferred for the lower loadings, with the assumption that the crystallite size is below the detection limit for XRD.

Shown in Figure 3 are TEM micrographs of a 30 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst, while elemental compositional information for this same catalyst is listed in Table 1. Inspection of Figure 3a indicates a range of $\text{Ni}_2\text{Mo}_3\text{N}$ particle sizes, but no evidence for a crystalline impurity. Figure 3b shows an oval-shaped $\text{Ni}_2\text{Mo}_3\text{N}$ particle on the alumina support having dimensions of 15×21 nm. The TEM micrograph in Figure 3b as well as others (not shown) yield *d*-spacing values of 2.11 and 2.80 Å for the {310} and {211} crystallographic planes of $\text{Ni}_2\text{Mo}_3\text{N}$, respectively, which are in good agreement with those from a simulated XRD pattern for $\text{Ni}_2\text{Mo}_3\text{N}$. The elemental composition of the supported $\text{Ni}_2\text{Mo}_3\text{N}$ is compared with the theoretically calculated values in Table 1. The Ni and Mo loadings are slightly lower than the calculated values, while the N content is substantially higher. As discussed later, the high N content is likely due to the presence of nitrogen-containing species on the alumina support or adsorbed N species on the supported bimetallic nitride particles.

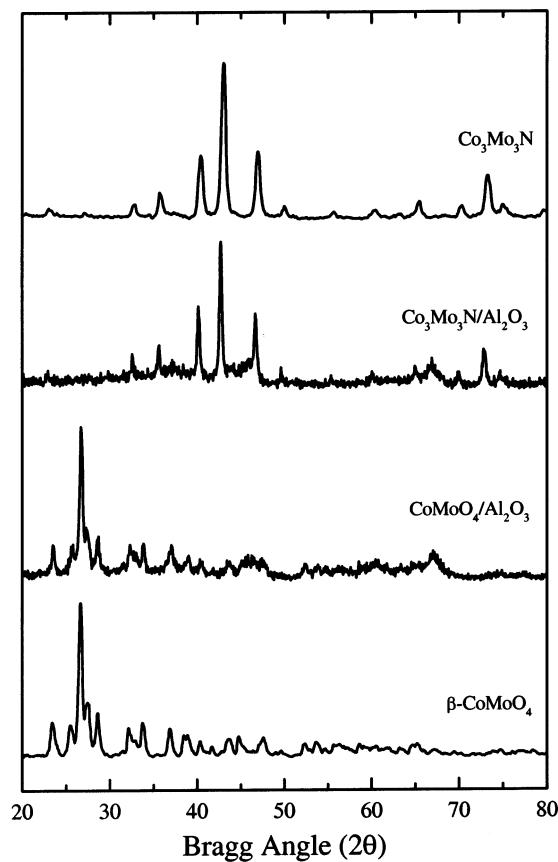
Listed in Table 2 are the BET surface area and O_2 chemisorption capacity for a $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst with a 20 wt % $\text{Ni}_2\text{Mo}_3\text{N}$ loading. The BET surface area of a 20 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst is significantly higher than the value of $7 \text{ m}^2/\text{g}$ reported by Jacobsen²⁸ for unsupported $\text{Ni}_2\text{Mo}_3\text{N}$. The chemisorption capacity of the reduced $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst compares favorably with those measured previously for 10–20 wt % $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ catalysts, which were in the range 80–130 $\mu\text{mol/g}$.⁶

$\text{Co}_3\text{Mo}_3\text{N}$ and $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$. Shown in Figure 4 are XRD patterns for unsupported and alumina-supported oxide precursors as well as $\text{Co}_3\text{Mo}_3\text{N}$ and $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts. The XRD pattern for the unsupported oxide precursor is in good agreement with

Figure 3. TEM micrographs of a 30 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst.

Table 2. BET Surface Areas and Chemisorption Capacities for Catalysts with 20 wt % Nitride/Carbide Loadings

catalyst	surface area (m^2/g)	O_2 chemisorption capacity ($\mu\text{mol/g}$)
$\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$	118	85.5
$\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$	111	114
$\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$	111	111


a reference pattern for $\beta\text{-CoMoO}_4$ (card no. 21-868), and the pattern for the supported oxide precursor shows the same peaks as well as those for the $\gamma\text{-Al}_2\text{O}_3$ support. After nitridation, the XRD pattern for the unsupported material (Figure 4) is in good agreement with published patterns for $\text{Co}_3\text{Mo}_3\text{N}$.^{29,30} The elemental composition of the unsupported $\text{Co}_3\text{Mo}_3\text{N}$, listed in Table 1, is consistent with that expected of the phase pure material. Returning to Figure 1, the $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst,

(27) Suryanarayana, C.; Norton, M. G. *X-ray Diffraction: A Practical Approach*; Plenum Press: New York, 1998.

(28) Jacobsen, C. J. H. *Chem. Commun.* **2000**, 1057.

(29) Houmes, J. D.; Bem, D. S.; zur Loyer, H.-C. *Mater. Res. Symp. Proc.* **1994**, 327, 153.

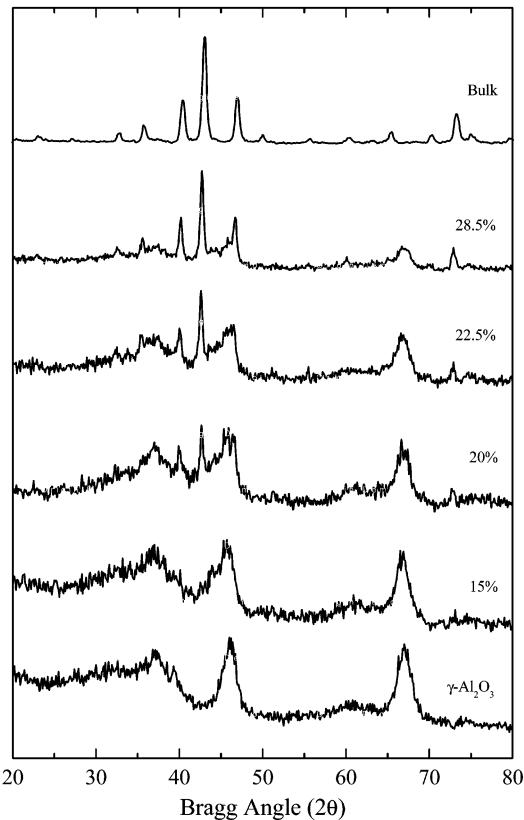

(30) Alconchel, S.; Sapiña, F.; Beltrán, D.; Beltrán, A. *J. Mater. Chem.* **1998**, 8, 1901.

Figure 4. X-ray diffraction patterns for CoMoO_4 , $\text{CoMoO}_4/\text{Al}_2\text{O}_3$, $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$, and $\text{Co}_3\text{Mo}_3\text{N}$. The theoretical loading of the supported oxide precursor and bimetallic nitride is 35 wt % $\text{Co}_3\text{Mo}_3\text{N}$.

which has a theoretical $\text{Co}_3\text{Mo}_3\text{N}$ loading of 35 wt %, exhibits the same peaks as those observed for unsupported $\text{Co}_3\text{Mo}_3\text{N}$, confirming the presence of $\text{Co}_3\text{Mo}_3\text{N}$ on the alumina support.

Shown in Figure 5 are the XRD patterns for a series of $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts with loadings in the range 15–28.5 wt % $\text{Co}_3\text{Mo}_3\text{N}$. A gradual increase in intensity of the peaks associated with $\text{Co}_3\text{Mo}_3\text{N}$ is observed as the loading of the bimetallic nitride increases above 15 wt %. From the XRD pattern for the 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst, an average crystallite size of 21 nm is calculated for the supported $\text{Co}_3\text{Mo}_3\text{N}$ particles using the Scherrer equation and the fwhm for the peak located at 42.7° . This crystallite size is smaller than the value of 36.3 nm reported by Hada et al.³¹ for unsupported $\text{Co}_3\text{Mo}_3\text{N}$. TEM micrographs and elemental compositional information for the 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst can be found in Figure 6 and Table 1, respectively. Inspection of Figure 6a shows a fairly uniform dispersion of $\text{Co}_3\text{Mo}_3\text{N}$ particles on the support with no evidence for a crystalline impurity. Figure 6b shows a high-resolution micrograph of a $\text{Co}_3\text{Mo}_3\text{N}$ particle with an approximate diameter of 22 nm. This micrograph as well as others (not shown) yield d -spacing values of 2.22 and 6.25 Å for the $\{422\}$ and $\{111\}$ crystallographic planes of $\text{Co}_3\text{Mo}_3\text{N}$, respectively, which are in good agreement with those from a simulated XRD pattern for $\text{Co}_3\text{Mo}_3\text{N}$. The elemental composition of the supported $\text{Co}_3\text{Mo}_3\text{N}$ is compared with the theoretically calculated values in Table 1. The Co and Mo loadings

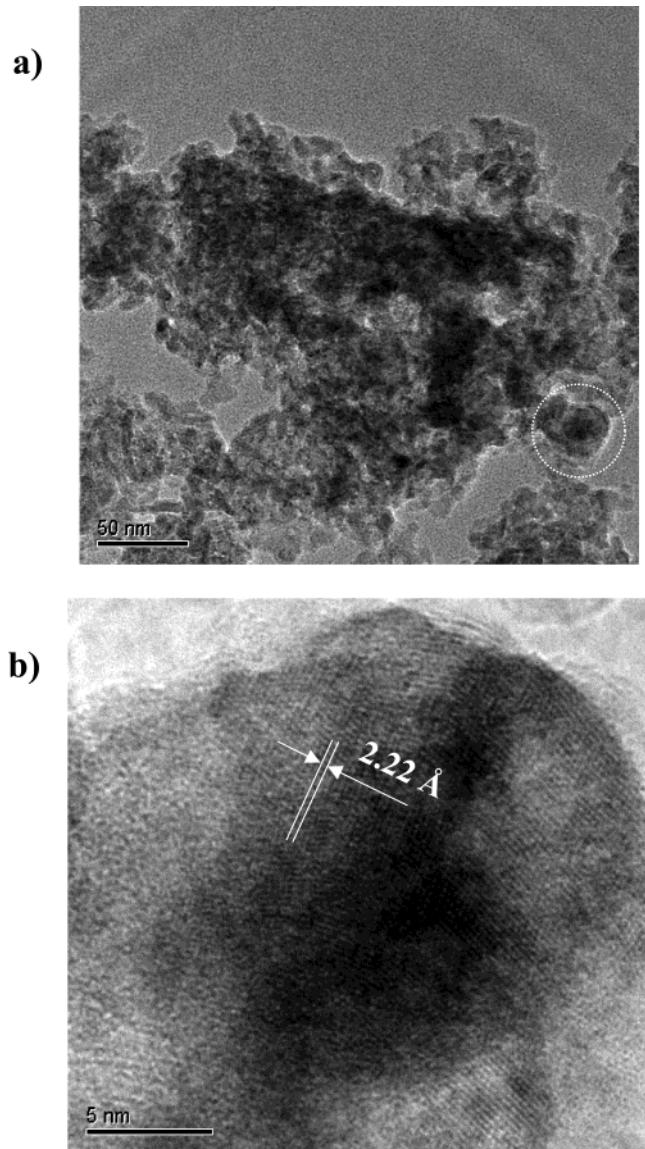
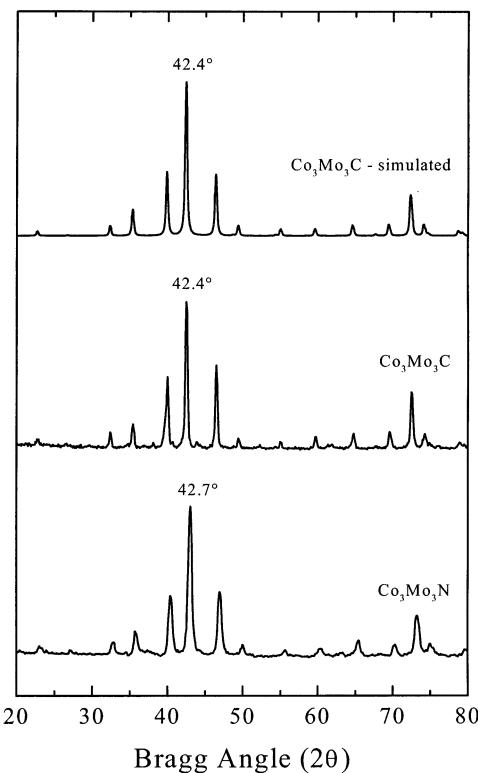


Figure 5. X-ray diffraction patterns for $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts with theoretical loadings of 15, 20, 22.5, and 28.5 wt % $\text{Co}_3\text{Mo}_3\text{N}$. Also shown for comparison purposes are the XRD patterns for $\gamma\text{-Al}_2\text{O}_3$ and $\text{Co}_3\text{Mo}_3\text{N}$.

are slightly lower than the calculated values, while the N content is substantially higher. As for the $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst, the high N content is likely due to the presence of N-containing species on the alumina support or adsorbed onto the bimetallic nitride particles that will be discussed later.


As given in Table 2, the 20 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst had a BET surface area of $111 \text{ m}^2/\text{g}$ and an O_2 chemisorption capacity of $114 \mu\text{mol}/\text{g}$. This surface area is considerably higher than the value measured by Hada et al.³¹ of $12 \text{ m}^2/\text{g}$ for unsupported $\text{Co}_3\text{Mo}_3\text{N}$. The O_2 chemisorption capacity value for the 20 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst can be compared to a value of $42.3 \mu\text{mol}/\text{g}$ reported previously from this laboratory for a 15 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst which contained either a Co–N or Co metal impurity.¹⁹ The substantially higher chemisorption capacity measured for the $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst prepared in this study is likely due to the higher metal loading, to improved dispersion of the nitride phase, and possibly to the absence of the Co impurity phase. The chemisorption capacity for the $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst compares well with those for 15–20 wt % $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ catalysts that were discussed briefly above.

Co₃Mo₃C and Co₃Mo₃C/Al₂O₃. Unsupported $\text{Co}_3\text{Mo}_3\text{C}$ was prepared via a two-step synthesis process in which $\beta\text{-CoMoO}_4$ was first nitrided to give $\text{Co}_3\text{Mo}_3\text{N}$ and subsequently carburized to give $\text{Co}_3\text{Mo}_3\text{C}$. The XRD patterns for unsupported $\text{Co}_3\text{Mo}_3\text{N}$ and $\text{Co}_3\text{Mo}_3\text{C}$ are shown in Figure 7 along with a simulated XRD pattern

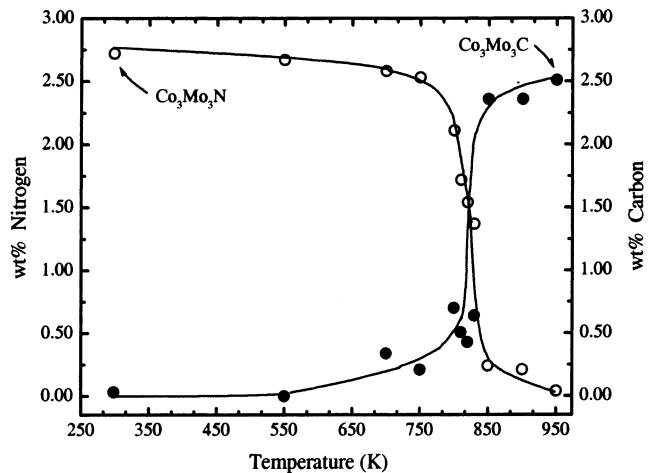


Figure 6. TEM micrographs of a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst.

for $\text{Co}_3\text{Mo}_3\text{C}$. The simulated XRD pattern was calculated using PowderCell³² as well as atomic coordinates and lattice parameters for $\text{Co}_3\text{Mo}_3\text{C}$ published by Newsam et al.³³ based upon a Rietveld analysis of a neutron diffraction pattern for pure $\text{Co}_3\text{Mo}_3\text{C}$. The XRD patterns of $\text{Co}_3\text{Mo}_3\text{N}$ and $\text{Co}_3\text{Mo}_3\text{C}$ are nearly identical, reflecting the fact that the two materials have the same space group ($Fd\bar{3}m$) and similar cubic cell parameters ($\text{Co}_3\text{Mo}_3\text{N}$, $a = 11.02396(8)$ Å;³⁰ $\text{Co}_3\text{Mo}_3\text{C}$, $a = 11.0709(3)$ Å³³). However, close examination of the XRD patterns in Figure 7 reveals a small shift of the peaks for $\text{Co}_3\text{Mo}_3\text{C}$ relative to those for $\text{Co}_3\text{Mo}_3\text{N}$, as indicated for the most intense peak in the two patterns. Elemental analysis of a sample of unsupported $\text{Co}_3\text{Mo}_3\text{C}$ yielded metals and nitrogen contents that are in excellent agreement with the theoretically predicted values (see Table 1), providing additional evidence that the material is phase pure.

Figure 7. X-ray diffraction patterns for as-prepared $\text{Co}_3\text{Mo}_3\text{N}$ and $\text{Co}_3\text{Mo}_3\text{C}$ as well as a simulated XRD pattern for $\text{Co}_3\text{Mo}_3\text{C}$.

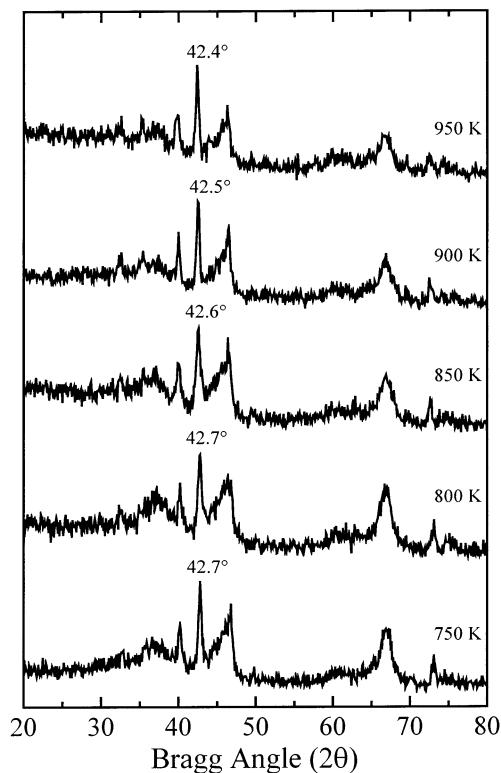


Figure 8. Weight percentage of nitrogen and carbon in $\text{Co}_3\text{Mo}_3\text{N}_x\text{C}_y$ products as a function of the maximum TPR temperature used for carburization of $\text{Co}_3\text{Mo}_3\text{N}$ intermediates in 20 mol % CH_4/H_2 .

Shown in Figure 8 are the nitrogen and carbon contents of a series of bimetallic Co–Mo materials, with variable compositions denoted as $\text{Co}_3\text{Mo}_3\text{N}_x\text{C}_y$, plotted as a function of the maximum temperature achieved during the carburization of unsupported $\text{Co}_3\text{Mo}_3\text{N}$. Significant replacement of nitrogen with carbon takes place for carburization temperatures above 750 K and is complete by 950 K. With these results in mind, samples of a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ precursor were carburized to increasing temperatures in the range 750–950 K. The XRD patterns for these materials are shown in Figure 9. As indicated on the XRD patterns, the most intense peak gradually shifts from the value associated with alumina-supported $\text{Co}_3\text{Mo}_3\text{N}$ (sample carburized at 750 K) to the value expected for alumina-

(32) Kraus, W.; Nolze, G. *J. Appl. Crystallogr.* **1996**, *29*, 3.

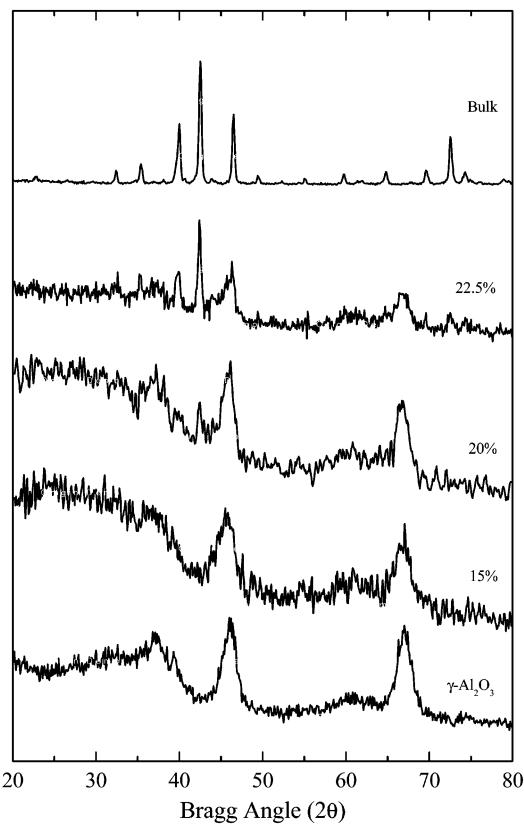
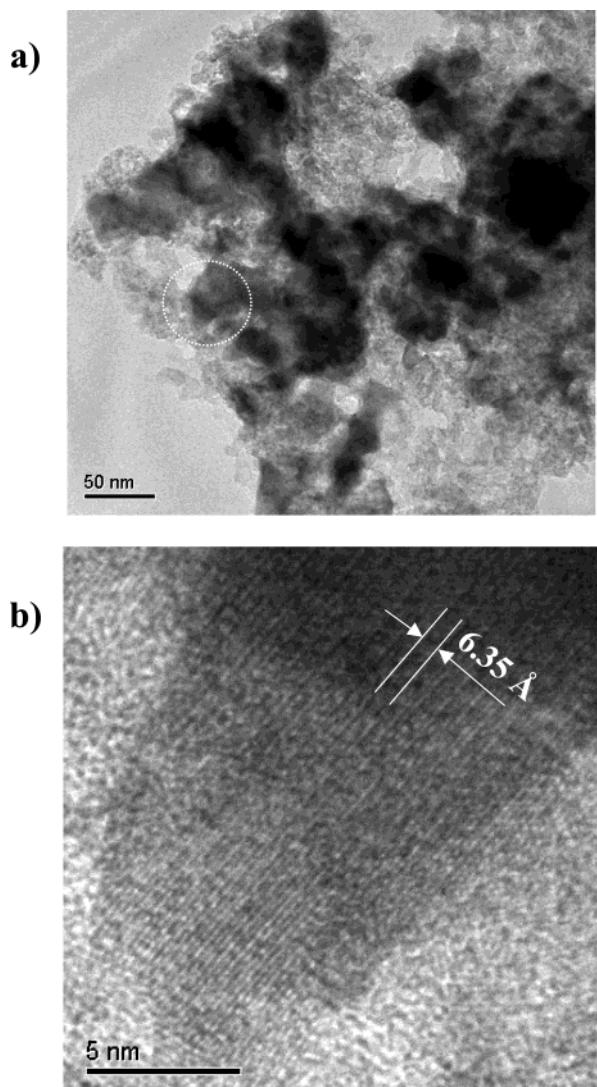

(33) Newsam, J. M.; Jacobson, A. J.; McCandlish, L. E.; Polizzotti, R. S. *J. Solid State Chem.* **1988**, *75*, 296.

Figure 9. X-ray diffraction patterns for $\text{Co}_3\text{Mo}_3\text{N}_x\text{C}_y/\text{Al}_2\text{O}_3$ catalysts (22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}_x\text{C}_y$) as a function of the maximum TPR temperature used for carburization of $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ intermediates (22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}$) in 20 mol % CH_4/H_2 .

supported $\text{Co}_3\text{Mo}_3\text{C}$ (sample carburized at 950 K). $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalysts with a range of loadings were prepared and XRD patterns for these catalysts are shown in Figure 10. From the XRD pattern for the 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst, an average crystallite size of 24 nm is calculated for the supported $\text{Co}_3\text{Mo}_3\text{C}$ particles using the Scherrer equation and the fwhm for the peak located at 42.4° . Shown in Figure 11 are TEM micrographs for a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst. The particle sizes apparent in Figure 11a are consistent with the average crystallite size measured by XRD. Figure 11b shows a high-resolution micrograph of a portion of a $\text{Co}_3\text{Mo}_3\text{C}$ particle approximately 25 nm in length. Examination of this image as well as others (not shown) reveal *d*-spacing values of 3.88 and 6.35 Å for the $\{220\}$ and $\{111\}$ crystallographic planes of $\text{Co}_3\text{Mo}_3\text{C}$, respectively, which are in good agreement with those from the simulated XRD pattern for $\text{Co}_3\text{Mo}_3\text{C}$ (see Figure 7). The elemental composition of the 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst is listed in Table 1. The metals and carbon contents are below the theoretically predicted values, and a significant nitrogen content was detected. On the basis of the elemental analysis, it is not possible to determine whether N is present in the bimetallic phase or on the support. As discussed later, the low carbon content (and the detected N) may indicate that there was incomplete replacement of nitrogen in the alumina-supported $\text{Co}_3\text{Mo}_3\text{N}$ during the synthesis of the $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst.

The BET surface area of a 20 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst, 111 m²/g, is identical to that of its $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ precursor and is substantially higher than the value reported by Xiao et al.¹⁶ of 15.5 m²/g for impure


Figure 10. X-ray diffraction patterns for $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalysts with theoretical loadings of 15, 20, and 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}$. Also shown for comparison purposes are the XRD patterns for $\gamma\text{-Al}_2\text{O}_3$ and $\text{Co}_3\text{Mo}_3\text{C}$.

$\text{Co}_{0.5}\text{Mo}_{0.5}\text{C}_x$ prepared by direct carburization of a CoMoO_4 precursor. An O_2 chemisorption capacity of 111 $\mu\text{mol/g}$ was measured for the 20 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst, which is slightly less than the value of 114 $\mu\text{mol/g}$ measured for its $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ precursor. The O_2 chemisorption value for the 20 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst compares favorably with those measured previously for 10–20 wt % $\text{Mo}_2\text{C}/\text{Al}_2\text{O}_3$ catalysts that were in the range 100–130 $\mu\text{mol/g}$.⁶

Discussion

As noted in the Introduction, a number of studies have been published in which the catalytic properties of monometallic and bimetallic carbides and nitrides have been explored. These materials have drawn particular interest as potential catalysts for use in hydro-teating processes such as hydrodesulfurization, where regulations requiring lower sulfur levels in transportation fuels are spurring the development of new catalysts. However, a rigorous understanding of the catalytic properties of oxide-supported bimetallic carbides and nitrides has been hampered by the fact that the supported bimetallic phases used in published studies were impure. The goal of the current study, therefore, has been to prepare phase pure, alumina-supported $\text{Ni}_2\text{Mo}_3\text{N}$, $\text{Co}_3\text{Mo}_3\text{N}$, and $\text{Co}_3\text{Mo}_3\text{C}$ catalysts whose catalytic properties will be investigated in subsequent studies.

The incorrect identification of Ni–Mo–N phases has been the source of some confusion in the recent literature. Bimetallic nitrides initially identified to be pure $\text{Ni}_3\text{Mo}_3\text{N}$ ^{34,35} were later determined to be impure ma-

Figure 11. TEM micrographs of a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst.

terials in which $\text{Ni}_2\text{Mo}_3\text{N}$ was the major phase.^{26,30} It was subsequently shown that pure $\text{Ni}_2\text{Mo}_3\text{N}$ can be prepared by nitridation of metallorganic hydroxide²⁶ or bimetallic oxide^{25,28} precursors in flowing NH_3 . As described earlier, we have also successfully prepared $\text{Ni}_2\text{Mo}_3\text{N}$ from a bimetallic oxide precursor. In contrast to the recent, successful reports of $\text{Ni}_2\text{Mo}_3\text{N}$ synthesis, equally recent studies have been published describing the preparation of $\text{Ni}-\text{Mo}-\text{N}/\text{Al}_2\text{O}_3$ catalysts in which the major nitride phase was erroneously identified to be $\text{Ni}_3\text{Mo}_3\text{N}$.^{20,23} In both cases, XRD patterns are reported for $\text{Ni}-\text{Mo}-\text{N}/\text{Al}_2\text{O}_3$ catalysts prepared from oxidic precursors with $\text{Ni}/\text{Mo} = 1.0$. In addition to " $\text{Ni}_3\text{Mo}_3\text{N}$ ", Chu et al.²⁰ note the presence of a substantial Ni impurity in their catalyst while the XRD pattern of the catalyst prepared by Yuhong et al.²³ shows a substantial $\gamma\text{-Mo}_2\text{N}$ impurity. The syntheses differ in that Chu et al.²⁰ carried out their nitridation using NH_3 and a maximum TPR temperature of 973 K while Yuhong et al.²³ used a 10 mol % H_2/N_2 mixture and a maximum TPR temperature of 823 K.

(34) Bem, D. S.; Gibson, C. P.; zur Loye, H.-C. *Chem. Mater.* **1993**, 5, 397.

(35) Weil, K. S.; Kumta, P. N. *Mater. Sci. Eng. B* **1996**, 38, 109.

To our knowledge, the synthesis of alumina-supported $\text{Ni}_2\text{Mo}_3\text{N}$ reported in the current study is the first in which a pure, oxide-supported $\text{Ni}-\text{Mo}-\text{N}$ phase has been prepared. The alumina-supported oxidic precursor had the appropriate metal stoichiometry ($\text{Ni}/\text{Mo} = 0.67$) and was nitrided in flowing NH_3 to a maximum TPR temperature of 1173 K. The results of Chu et al.,²⁰ Yuhong et al.,²³ and the current work are consistent with the thorough studies of Alconchel et al.^{25,30} in which the synthesis conditions were varied systematically for oxidic precursors with Ni/Mo ratios of 0.67 and 1.0. Nitridation of a $\text{Ni}/\text{Mo} = 1.0$ precursor to a maximum TPR temperature of 873 K yielded a $\text{Ni}-\text{Mo}-\text{N}$ material with substantial $\text{Mo}-\text{N}$ (MoN , Mo_2N) and $\text{Ni}_{0.2}\text{Mo}_{0.8}\text{N}$ impurities while nitridation of this same oxidic precursor to 1073 K produced a $\text{Ni}_2\text{Mo}_3\text{N}$ sample containing an unidentifiable Ni impurity. Nitridation of a $\text{Ni}/\text{Mo} = 0.67$ precursor to a maximum TPR temperature of 1223 K yielded the desired $\text{Ni}_2\text{Mo}_3\text{N}$ product.

Evidence for the purity of the bimetallic phase in the $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts prepared in the current study is based upon XRD and TEM measurements as well as elemental analyses. The XRD patterns of $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts with loadings of 25 wt % and higher are in good agreement with those of pure $\text{Ni}_2\text{Mo}_3\text{N}$ reported in this study and by others.^{25,26} For loadings of 20 wt % and lower, it is assumed that the $\text{Ni}_2\text{Mo}_3\text{N}$ crystallite size is below the XRD detection limit and, therefore, the presence of the bimetallic phase on the alumina support is inferred for these loadings. TEM micrographs and metals analysis of a 22.5 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst are consistent with the identification of phase pure $\text{Ni}_2\text{Mo}_3\text{N}$ on the alumina support, while the N content is not. The high N content, 2.07 wt % compared to the expected value of 1.03 wt %, is most likely due to the presence of N-containing species on the uncovered alumina areas of the catalyst or adsorbed to the surfaces of the bimetallic nitride particles. High N contents have been reported for $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ catalysts prepared using conditions similar to those employed in the synthesis of the $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts.^{36–38} Dolce et al.³⁶ measured N/Mo ratios = 0.75–1.26, compared to an expected value of $\text{N}/\text{Mo} = 0.5$, for $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ catalysts with a range of loadings that were prepared via NH_3 TPR in conditions similar to those utilized in the current study. Dolce et al.³⁶ attributed the high N contents of their catalysts to N-containing species on the support; a sample of $\gamma\text{-Al}_2\text{O}_3$ nitrided under the same conditions used to prepare the $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ catalysts had an N content of 0.4 wt %. This level of nitrogen on the alumina is insufficient to account for the discrepancy of the calculated and expected N contents of the highest loading $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ catalyst prepared by Dolce et al.³⁶ or the 22.5 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst prepared in this study. It is conceivable that spillover of N-containing species from the metal-containing phases to the support may significantly increase the N content of the alumina. Nitrogen-containing species adsorbed on the surfaces of the metal nitride particles may also be responsible for the high N content of the catalyst.

(36) Dolce, G. M.; Savage, P. E.; Thompson, L. T. *Energy Fuels* **1997**, 11, 668.

(37) Yang, S.; Li, C.; Xu, J.; Xin, Q. *J. Phys. Chem. B* **1998**, 102, 6986.

(38) Hada, K.; Nagai, M.; Omi, S. *J. Phys. Chem. B* **2000**, 104, 2090.

While adsorbed N species would not be expected to contribute substantially to the N content of a low surface area, unsupported bimetallic nitride, this may be important for well-dispersed, oxide-supported nitride particles.

The synthesis of unsupported $\text{Co}_3\text{Mo}_3\text{N}$ was first reported by Houmes et al.²⁹ Alconchel et al.³⁰ studied the synthesis of $\text{Co}_3\text{Mo}_3\text{N}$ in some detail and determined that the purity of the material is dependent on the maximum temperature achieved during the TPR synthesis in flowing NH_3 . For maximum temperatures below 1073 K, the authors observed substantial amounts of an unidentified impurity having XRD peaks in the range 40–45°. Alconchel et al.³⁰ prepared phase pure $\text{Co}_3\text{Mo}_3\text{N}$ via a TPR synthesis with a maximum temperature of 1173 K and a 50 sccm NH_3 flow. In the current study, we have prepared $\text{Co}_3\text{Mo}_3\text{N}$ using a slightly modified TPR synthesis employing a lower maximum temperature (1023 K) and a higher NH_3 flow (100 sccm).

A number of laboratories have reported the synthesis of nitrided $\text{Co}-\text{Mo}/\text{Al}_2\text{O}_3$ catalysts,^{17,19,22,39} but in only one case was XRD used to identify the bimetallic phase. Logan et al.¹⁹ described a synthesis for the preparation of $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts, but the supported $\text{Co}_3\text{Mo}_3\text{N}$ contained a significant Co–N or Co metal impurity as indicated by an XRD peak at 44.5°. The TPR synthesis of this catalyst utilized a maximum temperature of 970 K and a 60 sccm flow of NH_3 , followed by cooling of the catalyst from 970 K to room temperature in flowing He (30 sccm). In the current study, $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalysts with a range of loadings have been prepared, none of which have an XRD peak at 44.5°, suggesting that the supported $\text{Co}_3\text{Mo}_3\text{N}$ is free of the crystalline impurity detected in the earlier synthesis. On the basis of the XRD data alone, it is not possible to exclude the presence of this impurity phase in the form of crystallites that are too small to detect by XRD. Consistent with the XRD results, there is no evidence of impurity phases in TEM micrographs of a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst. The synthesis procedure described in the current study differs from that reported by Logan et al.¹⁹ in two respects: the maximum TPR temperature reached was 1023 K, and the catalysts were furnace-cooled in flowing NH_3 . Similar to the results for the 30 wt % $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst discussed earlier, elemental analysis of a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst revealed slightly lower metal contents than the theoretically predicted values, but also a substantially higher than expected N content. As for the $\text{Ni}_2\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst, we believe the high N content can be traced to N-containing species on the uncovered alumina areas of the catalyst or to N-containing species adsorbed on the surfaces of the $\text{Co}_3\text{Mo}_3\text{N}$ particles.

Excluding syntheses that involve arc-melting of the elements, relatively few studies have been published that describe the synthesis of unsupported $\text{Co}_3\text{Mo}_3\text{C}$. Newsam et al.³³ described a method for preparing $\text{Co}_3\text{Mo}_3\text{C}$ that involves two primary steps: (1) heating cobalt trisethylenediamine molybdate ($\text{Co}(\text{en})_3\text{MoO}_4$; $\text{en} = \text{H}_2\text{NCH}_2\text{CH}_2\text{NH}_2$) in an H_2/He mixture over the temperature range 298–923 K to give an unknown

intermediate precursor, followed by (2) heating the precursor to 1273 K in a CO/CO_2 mixture. The high temperature needed to convert the intermediate precursor to the bimetallic carbide makes this synthesis unattractive for the preparation of high surface area $\text{Co}_3\text{Mo}_3\text{C}$ in either an unsupported or a supported form. More recently, Green and co-workers¹⁶ reported the TPR synthesis of a series of Co–Mo carbides prepared by carburization of oxidic precursors with Co/Mo ratios in the range 0.25–1.0. The authors used 10 vol % $\text{C}_2\text{H}_6/\text{H}_2$ as the carburization gas mixture and the maximum temperature achieved during the TPR synthesis was 900 K. For an oxidic precursor with $\text{Co}/\text{Mo} = 1$, carburization yielded an impure product principally composed of $\beta\text{-Mo}_2\text{C}$ and Co metal. For lower Co/Mo ratios, the authors conclude that the carburized materials, while impure, contain substantial amounts of $\text{Co}_3\text{Mo}_3\text{C}$ as determined by XRD.¹⁶

Consistent with the results of Green and co-workers,¹⁶ attempts in our laboratory to prepare unsupported and alumina-supported $\text{Co}_3\text{Mo}_3\text{C}$ via carburization of oxidic precursors were unsuccessful. The products in all cases were impure materials, whether unsupported or supported, which consisted primarily of $\beta\text{-Mo}_2\text{C}$ and Co metal. The two-step synthesis procedure described in the current study for the preparation of unsupported and supported $\text{Co}_3\text{Mo}_3\text{C}$ was adapted from a synthesis first reported by Volpe and Boudart⁴⁰ for the preparation of $\alpha\text{-MoC}_{1-x}$ ($x \approx 0.5$) from $\gamma\text{-Mo}_2\text{N}$. This conversion is a topotactic process, with the product carbide retaining the structure of the starting material, $\gamma\text{-Mo}_2\text{N}$. Green and co-workers⁴ have recently reported that a similar two-step synthesis procedure can be used to prepare bimetallic carbide materials such as $\text{W}_9\text{Nb}_8\text{C}_x$ and $\text{Mo}_3\text{Nb}_2\text{C}_x$. In their study, the authors also include a lucid discussion of what constitutes a pseudomorphic or topotactic reaction. Our observation that $\text{Co}_3\text{Mo}_3\text{C}$ can be prepared from $\text{Co}_3\text{Mo}_3\text{N}$ is not surprising, given the similar structures and lattice parameters for the two materials. As described by Alconchel et al.,³⁰ $\text{Co}_3\text{Mo}_3\text{N}$ is an interstitial nitride (like $\gamma\text{-Mo}_2\text{N}$) in which N atoms reside only in interstices defined by Mo atoms. One might expect, therefore, that the N atoms in $\text{Co}_3\text{Mo}_3\text{N}$ could be replaced in a topotactic process with C atoms to give $\text{Co}_3\text{Mo}_3\text{C}$. While we do not present sufficient data in this study to confirm the topotactic nature of the synthesis of $\text{Co}_3\text{Mo}_3\text{C}$ from $\text{Co}_3\text{Mo}_3\text{N}$, it seems likely that this is such a reaction.

To our knowledge, no reports have appeared in the literature describing the synthesis of $\text{Co}_3\text{Mo}_3\text{C}$ in oxide-supported form. Consistent with the synthesis of unsupported $\text{Co}_3\text{Mo}_3\text{C}$, replacement of N in a 22.5 wt % $\text{Co}_3\text{Mo}_3\text{N}/\text{Al}_2\text{O}_3$ catalyst with C can be accomplished via TPR in a flowing 20 mol % CH_4/H_2 mixture to a maximum temperature of 950 K. The XRD pattern of the resulting 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst shows the identical shift of the XRD peak positions from their values for the corresponding nitride as observed for unsupported $\text{Co}_3\text{Mo}_3\text{N}$. The d spacings measured from TEM micrographs of the 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst are also consistent with successful synthesis of $\text{Co}_3\text{Mo}_3\text{C}$ on the support. The elemental analysis, how-

(39) Yang, S.; Li, Y.; Xu, J.; Li, C.; Xin, Q.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. *Phys. Chem. Chem. Phys.* **2000**, 2, 3313.

(40) Volpe, L.; Boudart, M. *J. Solid State Chem.* **1985**, 59, 332.

ever, suggests that the replacement of N with C is not complete. Assuming that the nitrogen and carbon contents measured in the elemental analysis are associated only with the bimetallic phase, a formula of $\text{Co}_{3.00}\text{Mo}_{3.00}\text{C}_{0.66}\text{N}_{0.31}$ is calculated. Other explanations include the possibility that the nitrogen is associated with the alumina support and that the low C content is due to incomplete combustion of the carbon in the oxide-supported $\text{Co}_3\text{Mo}_3\text{C}$. The measured carbon content, while below the theoretically predicted value, does indicate that excess carbon has not been deposited on the catalyst surface. The deposition of excess carbon (amorphous or graphitic) on the catalyst surface is a drawback of the TPR synthesis method that has been noted in a number of studies in which the preparation of unsupported $\beta\text{-Mo}_2\text{C}$ and $\text{Mo}_2\text{C}/\text{Al}_2\text{O}_3$ catalysts has been investigated.^{7,41,42}

The composition of the bimetallic phase of the 22.5 wt % $\text{Co}_3\text{Mo}_3\text{C}/\text{Al}_2\text{O}_3$ catalyst suggests additional work may be necessary to determine the optimal synthesis conditions for achieving full replacement of N in the supported catalyst. In preparing $\text{Mo}_2\text{C}/\text{Al}_2\text{O}_3$ catalysts via carburization of $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ precursors, Oyama and co-workers⁷ encountered difficulty in attaining complete replacement of N with C. A $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ catalyst carburized in a flowing 20 mol % CH_4/H_2 mixture to a maximum TPR temperature of 973 K yielded a supported phase of composition $\text{Mo}_2\text{N}_{0.66}\text{C}_{0.73}$ instead of the desired Mo_2C . These authors found that increasing the maximum temperature achieved during the TPR synthesis to 1173 K resulted in additional (but still incomplete) N replacement, but also resulted in the deposition of substantial amounts of excess carbon on the catalyst surface.

One final point that should be addressed is the dispersion of the alumina-supported $\text{Ni}_2\text{Mo}_3\text{N}$, $\text{Co}_3\text{Mo}_3\text{N}$, and $\text{Co}_3\text{Mo}_3\text{C}$. As discussed earlier, monometallic and

bimetallic carbides and nitrides have drawn interest as potential catalysts for a number of processes. To fully exploit this potential, it is necessary to optimize the dispersion of the bimetallic phase. X-ray diffraction and TEM images indicate that significantly smaller particle sizes can be achieved (relative to published values for the unsupported materials^{16,28,31}) by supporting $\text{Ni}_2\text{Mo}_3\text{N}$, $\text{Co}_3\text{Mo}_3\text{N}$, and $\text{Co}_3\text{Mo}_3\text{C}$ on $\gamma\text{-Al}_2\text{O}_3$. Furthermore, the oxygen chemisorption measurements reveal that the catalysts have high adsorption site densities, similar to those reported in the literature for $\text{Mo}_2\text{N}/\text{Al}_2\text{O}_3$ and $\text{Mo}_2\text{C}/\text{Al}_2\text{O}_3$ catalysts.⁶

Conclusion

Synthesis procedures have been developed for the preparation of alumina-supported $\text{Ni}_2\text{Mo}_3\text{N}$, $\text{Co}_3\text{Mo}_3\text{N}$, and $\text{Co}_3\text{Mo}_3\text{C}$ catalysts having high surface areas and O_2 chemisorption capacities. Studies are in progress in which the hydrotreating properties of these materials are being investigated, with particular focus on their catalytic activities and sensitivity to pretreatment conditions, as well as their resistance to deep sulfidation under hydrotreating reaction conditions.

Acknowledgment. This research was supported by the National Science Foundation under Grant CHE-9610438. Acknowledgment is also made to the Henry Dreyfus Teacher-Scholar Awards Program of the Camille and Henry Dreyfus Foundation for partial support of this research. A portion of the research (TEM) described in this paper was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Departments of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The authors would like to acknowledge Drs. C. H. F. Peden and C. Wang for helpful discussions and Stephanie J. Sawhill for carrying out the BET and chemisorption measurements.

CM011508J

(41) Lee, J. S.; Lee, K. H.; Lee, J. Y. *J. Phys. Chem.* **1992**, *96*, 362.
 (42) Hanif, A.; Xiao, T.; York, A. P. E.; Sloan, J.; Green, M. L. H. *Chem. Mater.* **2002**, *14*, 1009.